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CHAPTER 3

Overcoming the limitations of correlation analysis for
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Introduction

Despite modern methods in molecular biology, neu-
roanatomy, and functional imaging, monitoring elec-
tric signals from neuronal depolarization remains
important when evaluating the functional aspects of
both normal and pathological neural circuitry. Cor-
relation methods still rank popular and are exten-
sively used to analyze the functional interaction in
the electroencephalogram (EEG), the magnetoen-
cephalogram, local field potentials and more re-
cently, in simultaneously recorded single- and multi-
unit activity of many structures (tens to hundreds at
a time). This last item has deserved increasing atten-
tion due to its potential in bridging the gap between
the study of isolated single neurons and the under-
standing of encoding and processing of information
by neuronal populations (Eichenbaum and Davis,
1998; Nicolelis, 1998).

A host of other analytical techniques have
emerged, some employing information theoretic ra-
tionales by assessing mutual information (Yamada et
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al., 1993; Rieke et al., 1997; Brunel and Nadal, 1998)
or interdependence between signal pairs (Schiff et
al., 1996; Arnhold et al., 1999), while others are
extensions of spectral analysis=coherence analysis
(Glaser and Ruchkin, 1976; Duckrow and Spencer,
1992; Christakos, 1997; Rosenberg et al., 1998).
Despite these advances, a large fraction of neuro-
scientists still chiefly rely on the cross-correlation
between the activity of pairs of neural structures to
infer their functionality.

Like cross-correlation, all of these methods are in
one way or another restricted in their calculations
to using just the signal of two structures at a time.
In this article, we show that it is not only possible
but also desirable to analyze more than two struc-
tures simultaneously. Furthermore, we show also
that effective structural inference is only possible
if simultaneous signals from many (representative)
structures are jointly analyzed.

To handle many simultaneous structures, we em-
ploy the recently introduced notion of partial di-
rected coherence (PDC). This is a novel frequency
domain approach for simultaneous multichannel data
analysis based on Granger causality that employs
multivariate auto-regressive (MAR) models for com-
putational purposes (Baccalá and Sameshima, 1999).
We review PDC in Section 2 and illustrate its useful-
ness via toy linear models simulating multi-electrode
EEG measurements in Section 3, where we contrast
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it to other techniques (correlation=coherence analy-
sis). We discuss an application to experimental data
in Section 4. Further examples of PDC in a sin-
gle- and multi-unit activity context are available in
Sameshima and Baccalá (1999).

Partial directed coherence

The concept of partial directed coherence is the lat-
est development of a number of time series anal-
ysis efforts for describing how neural structures
are interconnected (Baccalá and Sameshima, 1999;
Sameshima and Baccalá, 1999). Its remote origin
is the paper by Saito and Harashima (1981) which
introduced the notion of directed coherence between
the activity of pairs of structures. Their method al-
lows factoring the classical coherence function (the
frequency domain counterpart of correlation analy-
sis) of a pair of structures into two ‘directed co-
herences’: one representing the feedforward and the
other one representing the feedback aspects of the
interaction between these two neural structures. Ex-
amples of use of pairwise directed coherence in
studying the relation between Parkinson’s tremor
and lack of feedback in motor control are contained
in Schnider et al. (1989).

In an attempt to generalize directed coherence
to a context of analysis of more than two simulta-
neously processed structures, the so-called method
of directed transfer function (DTF) was introduced
with several equivalent variants (Franaszczuk et al.,
1994; Baccalá and Sameshima, 1998; Baccalá et al.,
1998). This method was applied to foci determina-
tion and to EEG studies in mesial temporal lobe
seizure (Franaszczuk et al., 1994). Details on DTF
are contained in Appendix A.

In their original paper, Saito and Harashima
(1981) allude to a possible rationale for their method.
This concept is now known as Granger causal-
ity (Granger, 1969). According to it, an observed
time series x.n/ Granger-causes another series y.n/,
if knowledge of x.n/’s past significantly improves
prediction of y.n/; this kind of predictability im-
provement is not reciprocal, i.e. x.n/ may Granger-
cause y.n/ without y.n/ necessarily Granger-caus-
ing x.n/. This lack of reciprocity is the basic prop-
erty behind the determination of the direction of
information flow between pairs of structures which,

in turn, is the basis for decomposing classical coher-
ence into directed feedforward and feedback coher-
ence factors.

Following that rationale, we investigated how
generalizations, like DTF, of directed coherence to
N simultaneously processed structures compared to
statistical tests of Granger causality for N simulta-
neous time series (Baccalá et al., 1998). We real-
ized that DTF provided a physiologically interesting
frequency domain picture, yet structural inference
based on its computation did not always agree with
the result of Granger causality tests (GCT). We could
show that this was due to intrinsic aspects of DTF’s
definition (Baccalá and Sameshima, 1999) (see also
Appendix A).

Because Granger causality is a more fundamental
concept than the ad hoc generalization represented
by DTF, we went on to introduce the notion of partial
directed coherence (Baccalá and Sameshima, 1999).
This new structural connectivity estimator relies on
the simultaneous processing of N ½ 2 time series
and is able to expose a frequency domain picture of
the feedforward and feedback interactions between
each and every pair of structures within the set of
N simultaneously processed signals. Perhaps more
importantly, PDC reflects Granger causality closely
by paralleling the definition of Granger causality test
estimators.

The main preliminary ingredient of both PDC and
GCT (and of DTF as well, but in a fundamentally
different way) is their practical use of multivariate
autoregressive models as exemplified for N D 3
simultaneously monitored structures in the model
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In this model, x1.n/ depends on its own past
values x1.n�r/ through the coefficients a11.r/ while,
for example, x1.n/’s dependence on the past values
of the other series like x2.n �r/ is through the a12.r/

coefficients. As such, the time series x2.n/ only
Granger-causes x1.n/ if we can statistically show
that a12.r/ 6D 0 for some values of r . Or equivalently,
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rejecting the null hypothesis of ai j.r/ D 0 means
that x j .n/ does Granger-cause xi.n/.

The partial directed coherence from series j to
series i , at frequency f can be defined as

³i j. f / D Nai j. f /p
ā j . f /H ā j . f /

(2)

where

Nai j . f / D

8>><
>>:

1 �
pP

rD1
ai j .r/e� j2³ f r ; if i D j

�
pP

rD1
ai j .r/e� j2³ f r ; otherwise (3)

and ā j . f / is the vector

ā j . f / D

2
64

Na1 j . f /
:::

NaN j . f /

3
75 (4)

Because of its dependence on ai j .r/ in Eq. 3,
the nullity of ³i j. f / at a given frequency implies
lack of Granger causality from x j .n/ to xi .n/ at
that frequency. PDC is, therefore, a direct frequency
domain counterpart of GCT.

Though further details on PDC are contained else-
where (Baccalá and Sameshima, 1999), a compact
summary is available at Appendix A together with
its relation to DTF. Methods of MAR model fit-
ting are reviewed elsewhere (Marple, 1987). In the
next section, we discuss some examples of PDC’s
application contrasting it to other techniques.

Illustrative simulations

To provide objective comparisons of PDC with other
techniques, we use time series generated from known
linear toy models. In this case, exact theoretical
calculations of pairwise cross-correlation, classical
coherence, DTF and PDC can be made and allow
exposing all the relative methodological merits of
each approach while avoiding possible pitfalls of
experimental signals collected from neural systems
with unknown structure. The use of toy models is
further motivated by the desire to investigate pos-
sible structural inference impairments when simul-
taneously processing fewer than the N structures
important to the dynamics.

The first toy model example, mimicking local
field potential measurements along hippocampal

structures, is represented by the following set of
linear difference equations with N D 7 structures:

Model I

x1.n/ D 0:95
p

2x1.n � 1/ � 0:9025x1.n � 2/

C w1.n/

x2.n/ D �0:5x1.n � 1/ C w2.n/

x3.n/ D 0:4x2.n � 2/ C w3.n/

x4.n/ D �0:5x3.n � 1/ C 0:25
p

2x4.n � 1/

C 0:25
p

2x5.n � 1/ C w4.n/

x5.n/ D �0:25
p

2x4.n � 1/

C 0:25
p

2x5.n � 1/ C w5.n/

x6.n/ D 0:95
p

2x6.n � 1/ � 0:9025x6.n � 2/

C w6.n/

x7.n/ D �0:1x6.n � 2/ C w7.n/

with wi .n/ standing for innovation noises.
These equations are designed so that x1.n/ be-

haves as an oscillator driving the other structures,
either directly or indirectly, according to the dia-
gram in Fig. 1. Note that the interaction between
x1.n/ and x3.n/ is both via a direct path and via
an indirect route through x2.n/. The dynamics of
the pair x4.n/ and x5.n/ is designed so that they
jointly represent an oscillator, whose intrinsic char-
acteristics are due to their mutual signal feedback but
which are entrained to the rest of the structure via
x3.n/. The signals x6.n/ and x7.n/ belong to a to-
tally separate substructure where x6.n/ is designed to
generate oscillations at the same frequency as x1.n/;
x7.n/ does not feedback anywhere. A sample of the
signals produced in this way can be appreciated in
Fig. 2.

31

2

4 5

6 7

Fig. 1. Signal flow diagram for Model I.
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Fig. 2. Signals obtained by simulating Model I.

We begin our analysis by inspecting the theoreti-
cal pairwise cross-correlation contained in the array
of plots in Fig. 3a.

Consider just the latencies and lead structures
represented by the theoretical correlation maxima of
Fig. 3a as summed up in Fig. 3b’s diagram whose
arrows are labelled with the absolute values of the
latencies and originate in the leading structure. In
deducing the structural relationships between the
signals using this information, we may attempt to
trim the diagram in Fig. 3b. This leads to several
possible hypothetical structures compatible with the
observed latencies such as in Fig. 3c,d. Note that
structural ambiguities not only remain and but also
that no conceivable trimming of Fig. 3b can possi-
bly produce the correct solution in Fig. 1 because
Fig. 3b’s relation between x3.n/ and x2.n/ turns out
inverted with respect to that in Fig. 1.

In short, this example shows that correlation infor-
mation alone leads to ambiguous structural inference
when considering several time series measurements
simultaneously.

The results of the pairwise interaction using the
theoretical DTF is depicted by dark shaded curves
along the off-diagonals over a 7 ð 7 array layout
of plots of Fig. 4a. Along the shaded main diago-

nal of the array in Fig. 4a, we portray the power
spectrum for each time series. Note the spectral sim-
ilarity that characterizes all signals for this structure.
To facilitate comparisons, solid-line graphs along
the off-diagonals of the array depict the high pair-
wise classical coherences among those structures
that are interconnected. Fig. 4c’s schematic repre-
sents a summary of the relations described by DTF
in which signal sources are labelled along the x-axis
and targets along the y-axis. Thus, for instance, in
Fig. 4c, an arrow leaves x1.n/ and reaches x5.n/

because the first column of Fig. 4a has a significant
shaded area in row five. No direct reverse arrow ex-
ists as there is no dark shaded area in column 5, row
1 of Fig. 4a. In this and later graphs, thinner=dashed
arrows portray weaker connections. This leads to a
complex connectivity pattern in the graph describ-
ing DTF relationships (Fig. 4c). As in the case of
cross-correlation, the only possible inference is, for
example, that the signal in x1.n/ affects all other
nodes without clues as to how or through which
pathway this interaction takes place. Using the same
rule for associating source to target in labelling pair-
wise interaction using PDC, a completely distinct
situation emerges in Fig. 4b where PDC calculations
(dark shaded curves along the off-diagonal) lead to
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Fig. 3. The theoretical autocorrelations are shown along the main diagonal and, below it, all the theoretical cross-correlation functions are
plotted (a), with the x-axis scale ranging from �50 to 50 sample points, and the y-axis is between �1 and 1. Directed graph summarizing
signal propagation latency information (encoded via arrow labels) contained in the cross-correlation function (b). Two possible simplified
structures compatible with the theoretically calculated latencies are shown in (c) and (d). Note that, the graph simplification from (c) to
(d), the connection 1 ! 4 (with propagation latency 5 time units) is removed because it can be explained by the pathway 1 ! 3 ! 4
with the same total propagation latency value.

the correct structure of Fig. 4d (compare with Fig. 1).
We next slightly increase the complexity of this

example by adding a feedback from x5.n/ to x1.n/.
This is accomplished by rewriting the first equation
in Model I as

x1.n/ D 0:95
p

2x1.n � 1/ � 0:9025x1.n � 2/

C 0:5x5.n � 2/ C w1.n/ (5)

in accord with the diagram of Fig. 5.
As in the previous case, the theoretical DTF is

difficult to analyze (Fig. 6a,c), as opposed to PDC
(Fig. 6b,d) which clearly reflects the newly added
feedback. This pattern of straightforward analysis
using PDC carries over to a practical simulation
scenario of using 500 data points where the feed-
back-free situation (Fig. 7a) is easily distinguishable
from that when feedback from x5.n/ to x1.n/ is
present (Fig. 7b).

To provide some sense of the potential temporal
resolution of the method, we display the time evo-

lution of PDCs involving x1.n/ and x5.n/ (Fig. 8)
while randomly switching the feedback on and off.
Each PDC estimate comprises the use of 250 simu-
lated data points with 50% overlap between adjacent
data segments.

In comparing these examples, note that DTF’s
graph has arrows connecting almost all structures
when the feedback is switched on (Fig. 6c); this
is related to the fact that the PDC graph contains
pathways (direct or indirect) that connect any two
structures. Some arrows in Fig. 6c are missing
(x2.n/ ! x1.n/, x3.n/ ! x1.n/, x3.n/ ! x5.n/).
Their presence would have made Fig. 6c’s graph
fully connected. Though corresponding to existing
signal pathways, the missing arrows correspond to
small (but theoretically nonzero) DTFs that reflect
the weakness of the connection strength of the to-
tal pathways between structures that are far apart
from one another. In fact, DTF can be interpreted
as a marker for signal energy ‘reachability’ (see
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Fig. 4. Comparison between the theoretical DTF (a) (and its inferred structural interactions (c)) and the theoretical PDC results (b) (with
its signal flow diagram (d)). In both cases the signal flow graphs are constructed by assigning an arrow from the source structure (x-axis)
to the targets (y-axis) when dark shaded areas are significant. The spectral densities for the time series are depicted along the shaded
main diagonal of the arrays. The pairwise classical coherences (solid lines) are also depicted. In all plots, the x-axis represents the
normalized frequency in the 0 to 0.5 range, while the y-axis for power spectrum plots is scaled between 0 and peak value and values for
the other coherence plots lie between 0 and 1.

Remark 3 in Appendix A) and must be analyzed
with care. For example, examine the dip in the DTF
from x2.n/ to x3.n/ in Figs. 4a and 6a. It coincides
with the maximum of the power spectrum of both
these series. Rather than mean lack of pathway con-
nection at that frequency, this dip exemplifies (by

1 3

2

4 5

6 7

Fig. 5. Schematic diagram describing the inclusion of feedback
from x5.n/ to x1.n/ into Model I.

model design) how the energy reaching a struc-
ture (x3.n/) from another structure (x1.n/) at one
frequency may be almost exactly cancelled by the
energy coming through another pathway (x2.n/) due
to a phase inversion in the signal.

To emulate scalp EEG, our second example em-
ployed

Model II

x1.n/ D 1:8982x1.n � 1/ � 0:9025x1.n � 2/

C w1.n/

x2.n/ D 0:9x1.n � 2/ C w2.n/

x3.n/ D 0:85x2.n � 2/ C w3.n/

x4.n/ D 0:82x1.n � 2/ C 0:6x6.n � 3/ C w4.n/

x5.n/ D �0:9x6.n � 2/ C 0:4x2.n � 4/ C w5.n/

x6.n/ D 0:9x5.n � 2/ C w6.n/
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Fig. 6. Comparison between the theoretical DTF (a) (and its inferred structural interactions (c)) and the theoretical PDC results (b) (with
its signal flow diagram (d)) after turning on the feedback from x5.n/ to x1.n/. Spectral densities for the time series are depicted along the
shaded main diagonal of the arrays. The pairwise classical coherences (solid lines) are also depicted. Thin=dashed arrows portray weaker
connections.
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Fig. 7. Estimated PDC for Model I without (a) and with (b) feedback from x5.n/ to x1.n/ using 500 simulated points. Note how x6.n/

and x7.n/ show residual classical coherence with the other time series, despite their lack of direct connection.

where x1.n/ is an oscillator driving, directly or indi-
rectly, all the other structures. In this emulation, the
odd numbered signals represent the left hemisphere

leaving the other ones to map the other hemisphere
as in Fig. 9. An example of the simulated signals is
portrayed in Fig. 10.
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Fig. 8. Gray scale plots show the time evolution of the PDC (b and c) and classical coherence (d) between structures 1 and 5 calculated
from 250 simulated data point segments (overlapping by 50%) as the feedback from x5.n/ and x1.n/ in Model I is switched on and off
(a). The evolution of the classical coherence between these structures is also shown (d).

DTF results are shown in Fig. 11a together
with its corresponding inferred signal flow graph
in Fig. 11c. Note that DTF correctly identifies x1.n/

as the source driving all other structures (this is the
basis of DTF’s success as an identifier of epileptic
foci in Franaszczuk et al. (1994)). As in the previous
example, however, DTF remains ambiguous as to the
pathway actually followed by the signal. These possi-
ble signal pathway alternatives turn out resolved in a
much simpler fashion by examining PDC in Fig. 11b
which leads to a correct signal flow graph (Fig. 11d).

1 2

3 4

5 6

Fig. 9. Signal flow diagram for Model II.

Matching PDC calculations using simulated rather
than theoretical values are shown in Fig. 12. Accord-
ing to PDC, x1.n/’s role as a signal source for the
whole structure is equally well deducible.

A question that can arise about the use of PDC
regards what happens when calculations are based
on the processing of a reduced number of structures
than are actually representative of the structure and
dynamics of the process. Suppose we want to infer
the direct interhemispheric influence by looking only
at pairs of signals from both hemispheres along
the sagittal plane, i.e. by computing the pairwise
PDC of the pairs like (x1.n/; x2.n/), (x3.n/; x4.n/)
and (x5.n/; x6.n/) without making joint calculations
involving the other structures.

The results of these separate pairwise analyses are
shown in Fig. 13c, 13b and 13a, respectively. In the
presence of actual connections as for Fig. 13a,c, their
mutual feedback is correctly deduced from simulated
data, as opposed to the relationship between x3.n/

and x4.n/, where feedback presence is incorrectly
detected despite the absence of an actual direct inter-
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Fig. 10. Signals obtained by simulating Model II.
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Fig. 11. Comparison between the theoretical DTF (a) (and its inferred structural interactions (c)) and the theoretical PDC results (b) (with
its signal flow graph (d)). Spectral densities for the time series are depicted along the shaded main diagonal of the array. The pairwise
classical coherences (solid lines) are also shown. In the signal flow graphs (c) and (d), connection arrow thickness is drawn proportional
to the magnitude of DTF or PDC. Note that signal power is confined to lower frequencies.

connection. This means that we must not leave out
signals from essential structures while performing
the joint simultaneous signal analysis for functional
structure inference.

The only hope for understanding the relationships
among diverse neural structures lies in the processing
of a representative number of signals simultaneously.
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Fig. 12. Estimated PDC for Model II using 500 simulated data
points.

An application to experimental data

We illustrate PDC in connection to local field poten-
tials recorded from a rat in exploratory behavior.
The simultaneously processed structures comprise
the hippocampal CA1 field, somatosensory (A3) and
motor (A10) cortical areas and the dorsal raphe
(DR), where rhythmic oscillations in the theta range
are observed during desynchronized sleep and alert
states. Detailed DTF analysis of the same record of
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65
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6
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1 2

(a)
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(c)

PDC

Fig. 13. PDC results of processing pairwise structures (5,6) (a), (3,4) (b), and (1,2) (a) representing opposite hemispheres in Model II
that show the possibility of incorrect structural inference for the pair (3,4) (b) when not all the structures relevant to the dynamics of the
model are considered jointly.

these four jointly processed structures appeared in
Baccalá et al. (1998) with special attention to the
relationship between CA1 and A3. Fig. 14 depicts
the PDC time evolution between these structures us-
ing the electromyogram from neck muscles to label
behavioral states. For the first 30 s of this recording
segment, the rat actively explored a lighted cage,
then gradually turned inactive as can be followed
by electromyogram. Around 52 s, the rat resumed
the exploratory behavior when the cage lights were
turned off. As attested by looking at classical co-
herence and recording traces of Figs. 15 and 16,
rhythmic oscillations are more prominent during ac-
tive exploratory behavior.

In choosing special episodes in this record we
consider the period lasting between 18 and 20 s
(Fig. 15a) as characterized by high-amplitude elec-
tromyographic activity of neck muscles. The main
feature of the DTF’s interactions (Fig. 15b) results in
the fully connected graph (Fig. 15d) that portrays the
active participation of all structures. PDC (Fig. 15c)
reveals the underlying signal feedback pattern (two-
way interactions) and highlights DR’s possibly im-
portant role. A drastically different picture emerges
for the segment between 48 and 50 s of this same
record (Fig. 16a) when the animal’s neck muscles
show low activity. DTF interactions (Fig. 16b) pro-
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Fig. 14. Time evolution of the PDC analysis highlighting the relationship between A3 and CA1 for a rat whose exploratory behavior is
labelled via the electromyogram (EMG) from its neck muscles. A gray scale is used to represent the magnitude of PDC and classical
coherence. The corresponding time evolution of the DTF between these structures appeared in Baccalá et al. (1998).

duce a more sparsely connected graph (Fig. 16d) as
characterized by fewer strong connections. In com-
paring PDC calculations Fig. 15c,e against Fig. 16c,e
one notices DR’s role of reversal switching from be-
ing predominantly a source to being an information
sink. Furthermore, note how the influence of CA1
over DR is essentially indirect with the signal first
flowing through A3 and A10 in Fig. 16e, in sharp
contrast to the PDC functional connectivity graph
corresponding to the exploratory behavior segment
(Fig. 15e), where all structures receive substantial
influence from dorsal raphe (DR). Also in the quiet
state (Fig. 16e), information is mostly being re-
layed from the other structures through A10 to DR.
This example highlights the distinct and potentially
interesting functional connectivity patterns that char-
acterize different behavioral states.

Conclusions and comments

By analyzing linear toy models, we show PDC’s su-
perior performance over other commonly used meth-
ods specially cross-correlation and classical coher-
ence, while DTF analysis provides complementary

information whose analysis is less clear than PDC’s.
The main advantage of PDC lies in the graphi-
cally unambiguous frequency domain display of the
relationships among simultaneous measurements of
several time series as PDC can clearly expose the
feedback structure between directly connected pairs
of neural elements provided all the structures repre-
sentative of the dynamics are jointly processed.

Simultaneous recordings as well as the analysis
of representative samples of neural elements through
multi-site multichannel recording is therefore crucial
for deducing functional connectivity. This acquires
special importance in view of the fact that even
PDC pairwise analysis may induce misleading con-
clusions about the nature of the interaction among
neural elements. We therefore conclude that the use
of techniques based on the processing pairwise time
series are doomed to failure and that only the pro-
cessing of many simultaneous structures can lead
to an understanding of neural ensemble information
processing and coding.

Though unaddressed in this paper, statistical is-
sues are important. While asymptotic results for the
ai j .r/ coefficients exist and lead to Granger causality
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CA1 DR
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(b) (c)

(d) (e)
A10 A3

CA1 DR
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Fig. 15. Ten-second-long segment recording (corresponding to the segment 15–25 s of Fig. 14, sampled at 256 Hz) (a) from a rat
engaged in active exploratory behavior. The upper trace (head) is the electromyogram from neck muscles; the other four traces are
local field potentials showing rhythmic theta oscillations recorded from motor (A10) and somatosensory (A3) cortices, hippocampus
(CA1) and dorsal raphe (DR). The DTFs (b) determined from segment 18–20 s show strong functional connectivity between most of the
structures; weaker directional information flow occurs for the pairs DR ! CA1, A10 ! CA1 and A10 ! A3. In (d) arrows indicate
the direction of information flow resulting from DTF analysis; the weaker DTFs are indicated by dashed lines. Matching PDC analysis
results (c) from the same segment lead to the functional connectivity graph (e) which shows that DR not only sends but also receives
information from the other structures. As in (d), weak PDC values are represented by dashed arrow (pairs A10 ! DR, A10 ! CA1, A3
! DR, and CA1 ! DR). In all plots in (b) and (c), the x-axis represents the frequency in the range 0–32 Hz, while the y-axis for power
spectrum plots is scaled between 0 and peak value, and values for the other coherence plots lie between 0 and 1.
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Fig. 16. Ten-second-long recording segment (a) (corresponding to the 45–55 s behavioral segment of Fig. 14, sampled at 256 Hz)
showing the transition from the quiet state to active exploratory behavior induced by turning lights off at around 52 s. See Fig. 15
for details on channel labels. Note that theta waves become prominent in all four brain structures concomitantly with the onset of
electromyographic activity. When compared to Fig. 15d, DTFs determined from segment 48–50 s (b) shows a larger number of weaker
functional connections (d) indicated by dashed arrows. The corresponding PDC analysis (c) and its functional connectivity graph (e)
portray weaker connectivity from DR to all other structures. During this episode the DTF graph connectivities (d), CA1 ! DR and A3
! DR are not matched by direct connections in the PDC graph (e). They can, however, be explained respectively by the existence of
indirect signal pathways CA1 ! A10 ! DR and A3 ! A10 ! DR. Note also that DR is essentially an information sink while CA1 is
mainly an information source. In all plots in (b) and (c), the x-axis represents the frequency in the 0 to 32 Hz range, while the y-axis for
power spectrum plots is scaled between 0 and peak value, and for coherence plots between 0 and 1.
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tests (Lutkepohl, 1993; Baccalá et al., 1998), their
usefulness is less clear because of the ‘quasi-sta-
tionary’ nature of neural signals. More importantly
perhaps, as our examples show, is the fact that weak
connections can be barely detectable. This is spe-
cially true in the case of DTF where the effect of
weakly connected signal pathways is compounded
(for example see Fig. 6a,c). Also, the number of si-
multaneously processed structures affects the achiev-
able temporal resolution as more data points become
necessary to insure statistically reliable detection of
weak connections.

Finally, it is important to have in mind that,
though based on linear time series modelling, PDC
proves applicable and useful for the analysis of mul-
tiple structures that involve some levels of nonlinear
interactions as discussed in Sameshima and Baccalá
(1999). In fact, to our knowledge, PDC is the only
existing practical method that effectively goes be-
yond pairwise analysis and is capable of efficiently
handling multiple structures simultaneously as is es-
sential for reliable functional structural inference.
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Appendix A

If xi .n/, 1 � i � N , represent simultaneously processed discrete
time signals, the canonical way to represent the relationship
between these time series in the frequency domain is via their
joint power spectral density matrix, which reads

S. f / D
2
4

S1. f / S12. f / S13. f /

S21. f / S2. f / S23. f /

S31. f / S32. f / S3. f /

3
5 (6)

in a N D 3 example. In general, one may calculate S. f / by
using a multivariate (vector) autoregressive model (Priestley,
1981; Lutkepohl, 1993)

2
64

x1.n/

:
:
:

xN .n/

3
75 D

pX
rD1

Ar

2
64

x1.n � r/

:
:
:

xN .n � r/

3
75 C

2
64

w1.n/

:
:
:

wN .n/

3
75

(7)

with wi .n/ standing for white uncorrelated innovation noises.
The coefficient matrices Ar , for each lag r, may be estimated
either using least squares or fast maximum entropy methods. The
appropriate order of the model p can be inferred using Akaike’s
AIC criterion (Marple, 1987). In this case, the power spectral

density matrix may be written as

S. f / D H. f /Σ H H . f / (8)

where

Σ D

2
64

¦ 2
11 : : : ¦1N

:
:
:

: : :
:
:
:

¦N1 : : : ¦ 2
N N

3
75 (9)

is the covariance matrix of wi .n/, and

H. f / D Ā
�1

. f / D .I � A. f //�1 (10)

with

A. f / D
pX

rD1

Ar z�r

þþþþþ
zDe� j 2³ f

At this point, one option for describing the mutual interaction
between pairs of time series may be obtained through a general-
ized definition of the directed coherence from j to i as (Baccalá
and Sameshima, 1998; Baccalá and Sameshima, 1999)

	i j . f / D ¦ j j Hi j . f /p
Si . f /

; (11)

where

Si . f / D
NX

jD1

¦ 2
j j

þþHij . f /
þþ2

: (12)

Remark 1 The definition of DTF in Franaszczuk et al. (1994)
is a special case where ¦ii are made equal to 1 in Eq. 11.
Because of its relationship to the power spectral density ma-
trix,

þþ	i j . f /
þþ may be interpreted as a fraction of the power

originating in x j .n/ that reaches xi .n/.
An alternative way to describe the mutual interaction is

via the ai j .r/ elements of Ar , i.e. by testing Granger causal-
ity directly. If Nai j . f / be Ā. f /’s i; j -th element, i.e. the i-th
component of the j -th column ā j . f / of Ā. f /. After suitable
normalization, discussed elsewhere (Baccalá and Sameshima,
1999), one possible definition for partial directed coherence is

³i j . f / D Nai j . f /p
ā j . f /H ā j . f /

(13)

Remark 2 This name, ‘partial directed coherence’, comes
from an interpretation of ³i j . f / as factor in the partial coher-
ence 
i j . f / between two time series (Bendat and Piersol, 1986;
Baccalá and Sameshima, 1999).

Remark 3 The relationship between PDC and DTF is that
they are based, respectively, on the matrices Ā. f / and H. f /

which are inverses of one another. This inverse matrix relation-
ship occurs in graph theory where a matrix like Ā. f / describes
the connections of directed graphs while a matrix like H. f / is
analogous to the graph reachability matrix which records the
graph structures reachable from a given node (Baccalá et al.,
1991).

Remark 4 When N D 2, PDC leads exactly to the same
estimator as DTF (Baccalá and Sameshima, 1999).
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